


PII: S0040-4039(97)00642-4

Synthesis of Arylboronates via the Palladium(0)-Catalyzed Cross-Coupling Reaction of Tetra(alkoxo)diborons with Aryl Triflates

Tatsuo Ishiyama, Yoshiya Itoh, Takahiro Kitano, and Norio Miyaura* Division of Molecular Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

Abstract: The cross-coupling reaction of $(RO)_3BB(OR)_2(RO = methoxo and pinacolato)$ with aryl triflates to give arylboronates was carried out at 80 °C in the presence of $PdCl_2(dppf)$ (3 mol%), dppf (3 mol%) and KOAc (3 equivs) in dioxane. The reaction was available with various functional groups such as nitro, cyano, ester, and carbonyl groups. © 1997 Elsevier Science Ltd.

Recent studies on the addition and the cross-coupling reactions of tetra(alkoxo)diborons¹ (e.g., 2, 4a) by transition-metal catalyses provided a convenient method for the synthesis of organoboron compounds. The addition of 2 or bis(catecholato)diboron to alkynes,² 1,3-dienes,³ and alkenes⁴ with Pt(0), Rh(I), or Au(I) complexes has opened up a new access to stereodefined bis(boryl)alkenes and bis(boryl)alkanes. The Pd(0)-catalyzed cross-coupling reactions of 2 with haloarenes⁵ and allyl acetates⁶ afforded the corresponding aryland allylboronates. As a part of our program on the direct borylation of organic electrophiles with transition metal catalysts, we wish to report the Pd(0)-catalyzed cross-coupling reaction of aryl triflates with tetra(alkoxy)diboron (2 or 4) to give arylboronates (Eqs. 1 and 2).

The reaction between aryl triflates and 2 (1.1 equiv) was carried out at 80 \degree using various catalysts, bases and solvents to optimize the reaction conditions. Phenyl triflate smoothly underwent the cross-coupling under similar conditions used for the synthesis of 3 from aryl halides: PdCl₂(dppf) (3 mol%) (dppf abbreviate 1,1'-bis(diphenylphosphino)ferrocene) and KOAc (3 equivs) in DMSO at 80 \degree .⁵ However, relatively low yields resulted for other functionalized aryl triflates. The coupling with 1 having an electron-withdrawing group such as 4-acetylphenyl triflate gave only a 62% yield of 3 accompanying with 4-hydroxyacetophenone (29%) derived from the saponification of 1.⁷ On the other hand, the coupling with 4-methoxyphenyl triflate did not complete even on prolonged heating due to the catalyst decomposition precipitating palladium black (24 h, 64%).⁸ Fortunately, the difficulties associated with the competitive saponification or the catalyst decomposition were easily overcome with the use of dioxane as the solvent and an additional 1 equivalent of dppf to the catalyst. The yields of both reactions with 4-acetyl- and 4-methoxyphenyl triflate were improved to

92% (6 h) and 93% (13 h), respectively. The addition of LiCl, which have been used for the Pd(0)-catalyzed cross-coupling of organostannanes with aryl and vinyl triflates, was ineffective.⁹ KOAc can be the most suitable base because stronger bases such as K_3PO_4 and K_2CO_3 afford symmetrical biaryls resulting from the coupling between 3 and 1.⁵

Although we used 2 which is thermally stable and inert to water and oxygen, thus allowing the handling without special precautions, the pinacol esters 3 thus obtained resist the hydrolysis to arylboronic acids. Alternatively, the methyl ester 4a can be used for such purpose (Eq. 2). The cross-coupling of phenyl triflate with 4a gave an 83% yield of 5a along with biphenyl (14%), but the reaction with 4b was relatively slow. For convenience of the GC analyses, the yields of 5 were estimated from the corresponding pinacol ester.

PhOTT + $X_2B-BX_2 \xrightarrow{PdCl_2(dppf) / dppf}_{KOAc / dioxane} PhBX_2 \xrightarrow{pinacol}_{r.t. / 24 h} Ph-B'_O (2)$ 4a: X=OMe 5a 83% 4b: X=NMe₂ 5b 48%

The representative results are summarized in Table 1. A variety of aryl triflates having an electronwithdrawing or -donating substituent can participate in the cross-coupling under the conditions optimized in the above.¹⁰ Under these conditions, a wide variety of functional groups including nitro, cyano, ester, and carbonyl groups can be tolerated during the coupling (Entries 1-5). The reaction worked well for *ortho* monosubstituted aryl triflates (Entries 8 and 9), but all attempts at the coupling with mesityl triflate were unsuccessful. Heteroaryl triflates synthesized from 7-hydroxycoumarine and 8-hydroxyquinoline gave 3 without any difficulties (Entries 10 and 11), but a similar reaction with 2-quinolyl triflate failed. The protonolysis of the C-B bond is rather fast when the boron atom attached to the carbon adjacent to the heteroatom; thus, the protodeboration of 3 with the base afforded quinoline as the sole product.¹¹

1	+ 2	PdCl ₂ (dppf) / dppf KOAc / dioxane 80 °C / 7-18 h	3	Pd catalyst / K3PO4 dioxane / 80 °C	₹ ×	 	(3)ª
-	Entry	X =	Y =	Pd catalyst	Time / h	Yield / % ^b	
	1	4-MeCO	4-NC	PdCl ₂ (dppf)	16	93	_
	2	4-MeO	4-NC	PdCl ₂ (dppf)	24	81	
	3	4-MeO	4-MeS	PdCl ₂ (dppf) / dppf	24	65	_

⁴Experimental procedure, see Note 13. ^bIsolated yields based on the triflates used for the second coupling.

The direct preparation of arylboronic esters from aryl halides or triflates now allows a one-pot, twostep procedure for the synthesis of unsymmetrical biaryls (eq. 3).¹² The syntheses of three unsymmetrical

Entry	Triflate (1), Ar =	Product (3)	Time / h	Yield / % ^b	
1	4-O ₂ NC ₆ H ₄	NO ₂	6	86	
2	4-NCC ₆ H ₄		15	75	
3	4-HCOC ₆ H ₄	онс	17	(91)	
4	4-MeCOC ₆ H ₄	MeOC-	6	(92)	
5	4-MeO ₂ CC ₆ H ₄		21	80	
6	4-MeOC ₆ H ₄	MeO-	13	(93)	
7	4-MeSC ₆ H ₄		24	81	
8	$2-O_2NC_6H_4$		21	(64)	
9	2-MeOC ₆ H ₄		16	(80)	
10	7-coumaryl		17	84	
11	8-quinolyl	°	39	65	

Table 1. The Synthesis of Arylboronates $(Eq. 1)^a$

^aAll reactions were carried out in dioxane (6 ml) at 80 °C using 2 (1.1 mmol), 1 (1.0 mmol), PdCl₂(dppf) (3 mol%), dppf (3 mol%), and KOAc (3 mmol), see Note 10. ^b Isolated yields based on 1 and GLC yields are in parentheses.

biaryls were readily achieved in 93%, 81% and 65% yields when the cross-coupling reaction of the triflate with 2 was followed by the next reaction with another triflate in the presence of K_3PO_4 .¹³ Although both steps were efficiently catalyzed by PdCl₂(dppf), the addition of a fresh catalyst to the second coupling was advantageous to achieve high yields.¹⁴

References and Notes

- 1. Welch, C. N.; Shore, S. G. Inorg. Chem. 1968, 7, 225. Noth, H. Z. Naturforsch. 1984, 39b, 1463.
- Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018. Iverson, C. N.; Smith III, M. R. J. Am. Chem. Soc. 1995, 117, 4403. Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. Organometallics 1996, 15, 713. Lesley, G.; Nguyen, P.; Taylor, N. J.; Marder, T. B.; Scott, A. J.; Clegg, W.; Norman, N. C. Organometallics 1996, 15, 5137. Iverson, C. N.; Smith III, M. R. Organometallics 1996, 15, 5155.
- 3. Ishiyama, T.; Yamamoto, M.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1996, 2073.
- 4. Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1336; Ishiyama, T.; Yamamoto, M.; Miyaura, N., J. Chem. Soc., Chem. Commun. in press.
- 5. Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
- 6. Ishiyama, T.; Ahiko, T.-a.; Miyaura, N. Tetrahedron Lett. 1996, 37, 6889.
- Subramanian, L. R.; Hanack, M.; Chang, L. W. K.; Imhoff, M. A.; Schleyer, P. v. R.; Effenberger, F.; Kurtz, W.; Stang, P. J.; Dueber, T. E. J. Org. Chem. 1976, 41, 4099.
- 8. Kowalski, M. H.; Hinkle, R. J.; Stang, P. J. J. Org. Chem. 1989, 54, 2783.
- 9. Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033.
- 10. The representative procedure for 3: The flask was charged with PdCl₂(dppf) (0.03 mmol), dppf (0.03 mmol), KOAc (3 mmol) and 2 (1.1 mmol), and flushed with nitrogen. Dioxane (6 ml) and aryl triflate (1.0 mmol) were added, and the resulting mixture was then stirred at 80 °C for the period indicated in Table 1. The reaction mixture was diluted with benzene, washed with brine, and dried over MgSO₄. Kugelrohr distillation *in vacuo* gave 3. GC analyses were carried out at 80-300 °C using a glass column (3 mm X 2 m) packed with 10% OV-17 on Uniport B.
- Abraham, M. H.; Grellier, P. L. in *The Chemistry of the Metal-Carbon Bond*; Hartley, F. R., Patai, S., Eds.; Wiley: New York, 1985; Vol. 2, p 25.
- 12. For reviews, see: Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- 13. The solution of arylboronate, in situ prepared from 2 (1.1 mmol) and aryl triflate (1.1 mmol) following the procedure shown in Note 10, was directly used for the next cross-coupling with another triflate. K₃PO₄ (3 mmol), PdCl₂(dppf) (0.03 mmol), and aryl triflate (1.0 mmol) were added to the solution of 3, and the mixture was heated to 80 °C for 16-24 h (entries 1 and 2). The second coupling with 4-methylthiophenyl triflate shown in entry 3 was incomplete due to the precipitation of palladium black; thus, 1 equivalent of dppf to PdCl₂(dppf) was added.
- 14. The sequential cross-couplings without an additional catalyst resulted in 50-70%.

(Received in Japan 12 March 1997; revised 31 March 1997; accepted 4 April 1997)